일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 파이썬 머신러닝
- 안드로이드 웹뷰
- 플레이프레임워크
- 그라파나
- Golang
- 파이썬
- Play2 로 웹 개발
- 파이썬 데이터분석
- akka 강좌
- 파이썬 동시성
- 블록체인
- 주키퍼
- 파이썬 강좌
- 스칼라
- Akka
- play 강좌
- hyperledger fabric
- 하이퍼레저 패브릭
- 스칼라 동시성
- Hyperledger fabric gossip protocol
- 스위프트
- play2 강좌
- Actor
- Play2
- 이더리움
- CORDA
- Adapter 패턴
- 엔터프라이즈 블록체인
- 스칼라 강좌
- 하이브리드앱
- Today
- Total
HAMA 블로그
ICA (Independent Components Analysis) 란? 본문
ICA (Independent Components Analysis) 란?
[하마] 이승현 (wowlsh93@gmail.com) 2015. 10. 4. 22:27자율학습의 한갈래로 클러스터링 과 ICA 가 있다. 아래는 ICA 에 대한 짧은 소개이다.(자율 학습(Unsupervised Learning)은 기계 학습의 일종으로, 데이터가 어떻게 구성되었는지를 알아내는 문제의 범주에 속한다. 이 방법은 지도 학습(Supervised Learning) 혹은 강화 학습(Reinforcement Learning)과는 달리 입력값에 대한 목표치가 주어지지 않는다.)
Independent Components Analysis
Introductory Overview
Independent Component Analysis is a well established and reliable statistical method that performs signal separation. Signal separation is a frequently occurring problem and is central to Statistical Signal Processing, which has a wide range of applications in many areas of technology ranging from Audio and Image Processing to Biomedical Signal Processing, Telecommunications, and Econometrics.
Imagine being in a room with a crowd of people and two speakers giving presentations at the same time. The crowed is making comments and noises in the background. We are interested in what the speakers say and not the comments emanating from the crowd. There are two microphones at different locations, recording the speakers' voices as well as the noise coming from the crowed. Our task is to separate the voice of each speaker while ignoring the background noise (see illustration below).
This is a classic example of the Independent Component Analysis, a well established stochastic technique. ICA can be used as a method of Blind Source Separation, meaning that it can separate independent signals from linear mixtures with virtually no prior knowledge on the signals. An example is decomposition of Electro or Magnetoencephalographic signals. In computational Neuroscience, ICA has been used for Feature Extraction, in which case it seems to adequately model the basic cortical processing of visual and auditory information. New application areas are being discovered at an increasing pace.
소스 : https://documents.software.dell.com/statistics/textbook/independent-components-analysis
'통계 & 머신러닝 & 딥러닝 ' 카테고리의 다른 글
인공신경망 - (다층 피드 포워드 신경망) (0) | 2015.10.04 |
---|---|
인공신경망 - (퍼셉트론) (0) | 2015.10.04 |
인공신경망 - (소개) (0) | 2015.10.04 |
집단지성프로그래밍 (2) (0) | 2015.05.27 |
집단지성프로그래밍 (1) (0) | 2015.05.25 |